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SUMMARY

Recent progress in single-cell technologies has
enabled the identification of all major cell types in
mouse. However, for most cell types, the regulatory
mechanism underlying their identity remains poorly
understood. By computational analysis of the
recently published mouse cell atlas data, we have
identified 202 regulons whose activities are highly
variable across different cell types, and more impor-
tantly, predicted a small set of essential regulators
for each major cell type in mouse. Systematic valida-
tion by automated literature and data mining pro-
vides strong additional support for our predictions.
Thus, these predictions serve as a valuable resource
that would be useful for the broad biological commu-
nity. Finally, we have built a user-friendly, interactive
web portal to enable users to navigate this mouse
cell network atlas.

INTRODUCTION

Amulti-cellular organism contains diverse cell types; each has its

own functions and morphology. A fundamental goal in biology is

to characterize the entire cell-type atlas in human and model or-

ganisms.With the rapid development of single-cell technologies,

great strides have been made in the past few years (Svensson

et al., 2018). Multiple groups havemade tremendous progresses

in mapping cell atlases in complex organs (such as mouse brain

and immune system) (Rosenberg et al., 2018; Saunders et al.,

2018; Stubbington et al., 2017; Zeisel et al., 2018), early embryos

(such as in C. elegans and zebrafish) (Cao et al., 2017; Wagner

et al., 2018), or even entire adult animals (such as Schmidtea

mediterranea and mouse) (The Tabula Muris Consortium et al.,

2018; Fincher et al., 2018; Han et al., 2018; Plass et al., 2018).

International collaborative efforts are underway to map out the

cell atlas in human (Regev et al., 2017).

How do cells maintain their identity? While it is clear the main-

tenance of cell identity involves the coordinated action of many

regulators, transcription factors (TFs) have been long recognized

to play a central role. In several cases, the activity of a small num-

ber of key TFs, also known as themaster regulators, are essential
1436 Cell Reports 25, 1436–1445, November 6, 2018 ª 2018 The Au
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for cell identity maintenance: depletion of these regulators cause

significant alteration of cell identity, while forced expression of

these regulators can effectively reprogram cells to a different

cell type (Han et al., 2012; Ieda et al., 2010; Riddell et al., 2014;

Takahashi and Yamanaka, 2006). However, for most cell types,

the underlying gene regulatory circuitry is incompletely under-

stood. With the increasing diversity of gene expression pro-

grams being identified through single-cell analysis, an urgent

need is to understand how these programs are established dur-

ing development, and to identify the key regulators responsible

for such processes.

Systematic approaches for mapping gene regulatory networks

(GRNs) have been well established. The most direct approach is

through genome-wide occupancy analysis, using experimental

assays such as chromatin immunoprecipitation sequencing

(ChIP-seq), chromatinaccessibility, or long-rangechromatin inter-

action assays (ENCODEProject Consortium, 2012). However, this

approach is not scalable to a large number of cell types, and its

application is often limited by the number of cells that can be ob-

tained in vivo. An alternative, more generalizable approach is to

computationally reconstruct GRNs based on single-cell gene

expression data (Fiers et al., 2018), followed by more focused

experimental validations. In thisstudy,we took this latterapproach

to build a comprehensive mouse cell network atlas.

To this end, we took advantage of the recently mappedmouse

cell atlas (MCA) derived from comprehensive single-cell tran-

scriptomic analysis (Han et al., 2018), and combined with a

computational algorithm to construct GRNs from single-cell

transcriptomic data. Our analysis indicates that most cell types

have distinct regulatory network structure and identifies regula-

tors that are critical for cell identity. In addition, we provide an

interactive web-based portal for exploring the mouse cell

network atlas.
RESULTS

Reconstructing Gene Regulatory Networks Using
the MCA
To comprehensively reconstruct the gene regulatory networks for

all major cell types, we applied the SCENIC pipeline (Aibar

et al., 2017) to analyze the MCA data. In brief, SCENIC links cis-

regulatory sequence information together with single-cell RNA

sequencing (RNA-seq) data. SCENIC contains three main steps,
thor(s).
commons.org/licenses/by/4.0/).
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Figure 1. Mapping Mouse Cell Network Atlas with Regulon Activity

(A) Schematic overview of the computational approach in this study. A modified SCENIC pipeline is used to infer cell-type-specific gene regulatory networks.

(B–D) t-SNE map for all sampled single cells (�61 k) based on regulon activity scores (RAS), each cell is color-coded based on major cell-type assignment.

(B) All sampled cells (~61 k) are highlighted.

(C) Liver cells are highlighted.

(D) Stromal cells are highlighted.

See also Figures S1 and S2 and Tables S1, S2, and S3.
including co-expression analysis, target gene motif enrichment

analysis, and regulon activity evaluation. The main outcomes

contain a list of regulons (each representing a TF along with a

set of co-expressed and motif significantly enriched target

genes), and the regulon activity scores (RAS) for each cell (Fig-

ure 1A). To improve computational efficiency and robustness,
we modified the original pipeline to analyze pooled data instead.

Specifically, we divided the entire cell population into small

groups with similar cell states. This was achieved by random,

non-overlapping sampling from the same tissue and cell type.

Each group contains 20 cells. We applied SCENIC to infer regu-

lons based on the group-averaged gene expression profiles,
Cell Reports 25, 1436–1445, November 6, 2018 1437
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and the RAS scores were calculated at the single-cell level as in

the original study (Aibar et al., 2017). By testing its performance

on several representative tissues, we found that our modified

approach separated cell types more effectively compared to the

original implementation (Figure S1; see STAR Methods for

details).

We focused on a representative, well-annotated subset of

MCA data (Han et al., 2018), containing 61,637 cells sampled

from 43 tissues. Previous analysis has identified 98 main cell

types (Han et al., 2018). By applying the modified SCENIC

approach described above, we identified 202 significant regu-

lons containing 8,461 genes (Table S1).

The size of each regulon varies from 10–2,502 genes, with a

median size of 73 genes. Strikingly, different cell types are

well-separated using the RAS-based distance (Figures 1B and

S2A; Table S2). Even within a single tissue, different cell types

can be separated based on the regulon activities (Figures 1C

and S2B). For example, each of four main cell types identified

in liver occupies a distinct territory in the t-Distributed Stochastic

Neighbor Embedding (tSNE) plot (Figure 1C).

One question of interest is whether cells of the same type may

have different regulatory circuitries across tissues. Such differ-

ences would be relevant for investigating cell-environment inter-

actions (Figures 1D and S2C). To address this question, we

focused on stromal cells, which can be found in a wide variety

of tissues, providing support, structural and anchoring functions.

The behavior of stromal cells is well known to be highly plastic,

a necessary property for supporting a diverse range of tissue

development (Lee et al., 2006). Indeed, we found that the stromal

cells from different tissues tend to have distinct regulon activities

(Figure 1D). While stromal cells are clustered together from the

global view of t-SNE map, closer examination suggests the sub-

populations from different tissues—such as uterus, mammary

gland, bladder, and pancreas—are well separated. Similar

refined structure can be found in various other cell types, such

as T cells and epithelial cells (Figure S2C). Taken together, reg-

ulon-based activity score in different cell types provides a new

avenue to investigate the potential regulatory mechanism in

inter- and intra-cell type variations. Our analysis indicates that

GRN differences are primarily driven by cell type differences

but further modulated by tissue environment differences.

Comparative Analysis Identified Essential Regulators
for the Maintenance of Cell Identity
Our comprehensive network analysis provides an opportunity

to systematically identify critical regulators for cell identity. For
Figure 2. Cell-Type-Specific Regulon Activity Analysis

(A–D) Erythroblast.

(A) Rank for regulons in erythroblast cell based on regulon specificity score (RSS

(B) Erythroblast cells are highlighted in the t-SNE map (red dots).

(C) Binarized regulon activity scores (RAS) (do Z score normalization across all sam

map (dark green dots).

(D) SEEK co-expression result for target genes of top regulon Lmo2 in different GEO

co-expression significance of target genes in each dataset. Erythroblast related da

(E–H) Same as (A)–(D) but for B cells.

(I–L) Same as (A)–(D) but for oligodendrocytes.

(M–P) Same as (A)–(D) but for alveolar type II cells.

See also Figure S2 and Table S4.
each regulon, we evaluated its activities associated with each

of the 98major cell types (Table S3), and defined a regulon spec-

ificity score (RSS) based on Jensen-Shannon divergence (Cabili

et al., 2011) (Table S3; see STARMethods).We then selected the

regulons with highest RSS values and further examined their

functional properties. To test whether this approach is effective,

we started with the erythroblast because its core gene regulatory

network has been well characterized (Orkin and Zon, 2008). Our

network analysis identified Lmo2, Gata1, and Tal1 (also known

as SCL), as the most specific regulons associated with erythro-

blast (Figure 2A). tSNE plot provides additional support that the

activities of these regulons are highly specific to erythroblast

(Figures 2B and 2C). Of note, all three factors are well-known

master regulators for erythrocytes (Welch et al., 2004; Wilson

et al., 2010; Wu et al., 2014). Another well-characterized cell

type is the B cell. Our network analysis identified Ebf1 and

Bcl11a as the most specific regulons (Figures 2E–2G). Both fac-

tors are well known to be essential regulators for maintaining

B cell identity (Liu et al., 2003; Nechanitzky et al., 2013).

The success of our approach in recapitulating critical regula-

tors for well-characterized cell types motivated us to repeat

the analysis for all other 96 cell types. For each cell type, we

identified a small number of regulons with exceptionally high

specificity scores (Figures 2, S2D, and S2E). To systematically

evaluate the accuracy of these predictions, we used two com-

plementary approaches: SEEK (Zhu et al., 2015) and CoCiter

(Qiao et al., 2013), based on mining the pubic datasets and liter-

atures, respectively. First, SEEK analysis was done to select da-

tasets in which the TF and its target genes within a regulon are

co-expressed. We queried the titles for public mouse datasets

for enrichment of cell-type-specific terms, with the assumption

that functionally related genes tend to be co-expressed in the

corresponding cell types. Second, CoCiter analysis was done

to identify enriched co-occurrence of a gene and cell type term

pair in publication abstracts, with the assumption that function-

ally related genes and terms should frequently appear together

in the literature.

To test if the above two data-mining approaches are useful

validation strategies, we applied each approach to test the reg-

ulators identified for erythroblast and B cells. For erythroblast,

we applied SEEK analysis to search for GEO datasets in which

the genes in regulon Lmo2 are significantly co-expressed.

Among the more than 2,000 datasets examined by SEEK, the

erythroblast related datasets are highly ranked (Figure 2D;

Table S4, Fisher’s exact test, p = 5.07e�14; see STARMethods).

Similarly, we applied CoCiter analysis to search for publications
).

ples, and set 2.5 as cutoff to convert to 0 and 1) for top regulon Lmo2 on t-SNE

datasets. The x axis represents different datasets, and the y axis represents the

tasets with significant correlation (p value < 0.01) are highlighted by yellow dots.

Cell Reports 25, 1436–1445, November 6, 2018 1439



where genes in regulon Lmo2 co-occur with the term ‘‘erythro-

blast/erythrocyte.’’ Again, the result is highly specific (co-citation

impact [CI] = 8.41, permutation p < 0.001, see STAR Methods).

Similarly, for B cells, the top ranked datasets in which Ebf1

and its target genes are co-expressed tend to be associated

with B cells (Figure 2H, p = 1.04e�05), and these genes tend

to co-occur in studies related to B cells (CI = 9.38, permutation

p < 0.005).

The above analysis indicates that both SEEK and CoCiter

analyses are useful for validating predicted essential regulators

of cell identity. Therefore, we applied both approaches to eval-

uate the relevance of predicted essential regulators for other

cell types, most of which are incompletely characterized. For

example, oligodendrocytes are a type of neuroglia whose main

functions are to provide support and insulation to axons in the

CNS. While various factors have been implicated to play a role

in oligodendrocyte development (Zuchero and Barres, 2013),

the most important regulators remain unknown. Our network

analysis found that regulon Thra shows the highest specificity

score (Figures 2I–2K), suggesting this may be one of the most

essential regulators for oligodendrocyte identity. As additional

support, SEEK analysis indicated that the genes in regulon

Thra are significantly co-expressed in oligodendrocyte related

datasets (Figure 2L, p = 2.92e�07). For the potential target

genes of Thra, CoCiter analysis shows that there are 204 papers

(CI = 7.68, permutation p < 0.005) mentioned both the genes of

regulon Thra and ‘‘oligodendrocyte’’ in their abstracts.

Approximately 15% of lung cells belong to alveolar type II

(AT2), which has the important functions of synthesizing and

secreting surfactant (Mason, 2006). Our GRN analysis indicates

that regulon Irx1 shows the highest specificity score in these

cells (Figures 2M–2O), indicating this TF may be an essential

regulator for AT2 cell identity. As additional support, SEEK anal-

ysis shows the genes in regulon Irx1 significantly co-express in

alveolar related datasets (Figure 2P, p = 4.84e�29). Literature

mining finds that the genes in this regulon are associated with

‘‘alveolar’’ (CI = 8.02, permutation p value < 0.001). Taken

together, these results strongly indicate that our predicted cell-

type-specific regulators are functionally relevant.

Regulons Are Organized into Combinatorial Modules
Transcription factors often work in combination to coordinate

gene expression levels. To systematically characterize the

combinatorial patterns, we compared the atlas-wide similarity

of RAS scores of every regulon pair based on the Connection

Specificity Index (CSI) (Fuxman Bass et al., 2013) (see STAR

Methods). Strikingly, these 202 regulons are organized into 8

major modules (Figures 3A and S3A). For each module, we iden-

tified several representative regulators and cell types through

their average activity scores (Figure S3B). When mapping the

average activity score of each module onto tSNE map, we found

that each module occupies distinct region and all highlighted re-

gions show complementary patterns (Figure S3C). Module M1

contains regulators Gata1, Tal1, and Lmo2, which are essential

regulators for the erythroblast. M2 contains regulators that

are associated with epithelial proliferation and endothelial

apoptosis, such as Jun and Fos (Okada et al., 2004; Wang

et al., 1999). M3 contains a mixture of stroma-specific factors,
1440 Cell Reports 25, 1436–1445, November 6, 2018
such as Twist2 and Nfix (Galván et al., 2015; Grabowska et al.,

2014), as well as regulators for bone formation, such as Creb

family members (Murakami et al., 2009). Several M4 regulators,

such as Ppard (Shi et al., 2017) and Klf3 (Kaga et al., 2017), are

associated with epithelial cells. Module M5 contains regulators

that are specifically activated in testicular cells, such asSox5 (Ki-

selak et al., 2010) and Ovol2 (Chizaki et al., 2012). Regulons in

M6 are highly associated with the nervous system, such as oligo-

dendrocytes and astrocytes. The activity of M7 including Mafb,

Irf2, and Nfkb1 is specifically high in different immune cell types

(Valledor et al., 1998), such asmacrophages, microglia, dendritic

cells, B cells, and T cells. Module M8 is also related to immune

cells but it is very specifically enriched in one subtype of

T cells that are derived from the thymus tissue (cluster 8) (Figures

1B and S3C). A closer examination of this cell type indicates that

the regulon Rorc is specifically activated in this subtype. It is

known that RORgt (encoded byRorc) is essential for T cell matu-

ration in the thymus and could suppress conventional effector

responses such as proliferation and cytokine production (Sun

et al., 2000; Yui and Rothenberg, 2014), which indicates this sub-

type of T cells might be in a ‘‘naive’’ state. In contrast, the T cell

subtypes that are associatedwithM7 have distinct regulon activ-

ities and reside in other tissues. For example, T cells from clus-

ters 3 and 15 are mainly from mammary gland tissues. In these

subtypes, the regulon Batf (contained in M7) has the highest

specificity score. Because Batf has been identified to play a

fundamental role in regulating the differentiation of effector of

CD8+ T cells (Kurachi et al., 2014), these two T cell subtypes

are likely to be in an ‘‘activated’’ state.

We next focused on the largest module M7, which contains

48 regulons. This module is strongly associated with immune

cell types. This is perhaps not surprising, considering the

complexity of the mammalian immune system. Consistent with

this observation, the target genes in these regulons are enriched

for immune related functions, such as ‘‘defense response’’ and

‘‘immune system response.’’ A closer look reveals that M7 can

be further divided into 5 smaller sub-modules (SM1–SM5) (Fig-

ure 3B). Interestingly, each smaller module is specifically associ-

ated with distinct immune cell types (Figure 3C). For example,

SM3 is associated with neutrophils, and the involved regulons

including Stat5a (Fiévez et al., 2007), Foxo3 (Osswald et al.,

2018), and Elf1 (Bjerregaard et al., 2003) are associated with

neutrophil regulation. SM4 is mainly related to macrophages;

correspondingly, many well-known macrophage-related regula-

tors are predicted by our network analysis, such as Irf family

genes and Nfkb genes (Valledor et al., 1998). Regulons in SM5

are highly activated in eosinophil cells, and it has been shown

that C/EBP genes are required for eosinophil lineage commit-

ment and maturation (Nerlov et al., 1998). These analyses indi-

cate a hierarchical organization of regulatory modules that

work together in fine-tuning cellular states.

Mapping the MCA Network Using Cell-Type-Specific
Regulatory Activity
The full MCA dataset contains over 800 cell types (Table S2). At

this resolution, many cell types share similar gene expression

patterns and their biological functions are likely to be less

distinct. Our complete network analysis estimated the RAS
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Figure 3. Identification of Combinatorial Regulon Modules

(A) Identified regulon modules based on regulon connection specificity index (CSI) matrix, along with representative transcription factors, corresponding binding

motifs, and associated cell types.

(B) Zoomed-in view of module M7 identifies sub-module structures.

(C) Different sub-modules in M7 are associated with distinct immune cell types and regulon activities.

See also Figure S3.
and RSS (Table S3) for all these cell types. We found that related

cell types share similar overall network structure. Such relation-

ship can be well-represented by a highly modularized graph,

where each edge connects a pair of related cell types whose

overall regulon activities are similar (Spearman correlation coef-

ficient>0.8) (Figure 4A). The global network structure is similar to

that of the 98 major cell types (Figure S4). This graph can be

further divided into 21 groups (G1–G21) by using the Markov

clustering algorithm (MCL) (see STAR Methods), with func-

tional-related cell types being clustered together. Nine of these

groups (G1–G9) contain more than 10 related cell types (Figures

4A and 4B). For example, G1 contains a number of blood-related
cell types, whereas cell types in G2 perform various supporting

functions. The Sankey plot (Figure 4B) summarizes the relation-

ship between cell types and their top associated regulon

modules. For example, M1, M7, and M8, which are immune

cell-type-related regulon modules (Figure 3A), are highly en-

riched in G1, whereas modules M2 and M3 (stromal cell-related

modules) (Figure 3A) are highly enriched in G2.

A Web-Based Resource for Interrogating Mouse Cell
Network Atlas
We created a web-based portal to enable users to easily navi-

gate this predicted mouse cell network atlas (http://regulon.rc.
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Figure 4. A Summary View of the Mouse Cell Network Atlas

(A) Relatedness network for the 818 cell types based on similarity of regulon activities. Each group represents a set of highly related cell types.

(B) Sankey plot shows relationship between cell-type groups G1–G9 and regulon modules M1–M8, the thematic cell type composition within each cluster is

indicated by the corresponding wordcloud plot.

(C) A representative screenshot of the web portal obtained by querying ‘‘cumulus cells.’’

See also Figure S4 and Tables S2 and S3.
fas.harvard.edu/). The web interface provides both regulon-

centric and cell-type centric views. The regulon-centric view rep-

resents the relationship between the 202 regulons; each edge

connects a pair of regulons whose cell-type-specific activity

scores are highly correlated. Similarly, the cell-type centric

view represents the relationship between the cell types; each
1442 Cell Reports 25, 1436–1445, November 6, 2018
edge connects a pair of cell types that share similar regulon

activity patterns. The user can choose between the 98 major

cell types (that are analyzed here) and 818 cell types (from the

whole MCA) versions.

As an example, cumulus cells are a special cell type in

the ovary whose function is not well characterized. To find

http://regulon.rc.fas.harvard.edu/


information about this cell type, a user could simply enter

‘‘cumulus cell’’ in the search box to search for related cell types

(Figure 4C, Box 1). This will lead to amenu containing related cell

types identified by the MCA, one of these cell types is encoded

as ‘‘Cumulus cell_Nupr1 high’’ (Figure 4C, Box 2), as Nupr1 is a

distinct marker for this cell type. Selecting this cell type would

generate two main outputs. The first output is a list of regulons

ranked by the degree of RSS. The most specific regulons are

Foxp1, Arh, and Vdr, although a number of additional regulons,

such as Foxo1, have similar specificity (Figure 4C, Box 3). The

second output is a list of cell types with similar regulatory net-

works. Not surprisingly, its neighboring cell types include other

cumulus cell subtypes identified by MCA. Of interest, granulosa

cells, which are also called cumulus granulosa cells depending

on location within the ovarian follicle, are also identified as its

neighbors (Figure 4C, Box 4). Thus, biomedical investigators

can identify putative regulons that are likely important during

mouse ovary and oocyte development. The web portal also pro-

vides a zoom function, which enables users to interactively

explore the regulon and cell-type network structures at any

desired resolution. In addition, the raw data are also download-

able from the web portal to support further investigation.

DISCUSSION

Our knowledge of cellular heterogeneity has exploded in the past

fewyears. Incomparison, formostof thecell types identifiedso far,

we lack mechanistic understanding how their characteristic gene

expression programs are established and maintained. Neither do

we understand the developmental and functional relationship be-

tween different cell types. Such information is not just of funda-

mental biological interest, but also can guide developing novel

cell reprogramming strategies with clinical implications. Building

upon the recently mapped MCA (Han et al., 2018), we have

comprehensively constructed the GRNs for all major cell types in

mouse through computational analysis. An important conse-

quence is the predictions of critical regulators for each cell type.

While most predictions remain hypotheses, they have provided a

guide for future experimental investigation. As such, we have

created a valuable resource for the broad biologist community.
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METHOD DETAILS

Datasets
TheMCA dataset and the corresponding cell type annotation were downloaded from https://figshare.com/articles/MCA_DGE_Data/

5435866. It contains two parts: (1) the subsampled�61K single cell dateset, which includes 98major cell types and covers 43 tissues

and organs; (2) the whole MCA dataset, which contains over 250K single cells after removing the low-quality cells mapped to 818 cell

types.

Inference of regulons and their activity
A number of computational methods have been developed to predict gene regulatory networks from single-cell gene expression data

(Fiers et al., 2018). Here we used a modified version of the SCENIC (Single-Cell rEgulatory Network Inference) approach (Aibar et al.,

2017; Davie et al., 2018) for constructing GRNs from single-cell RNaseq data (Han et al., 2018). Briefly, SCENIC contains three steps:

(1) identify co-expression modules between TF and the potential target genes; (2) for each co-expression module, infer direct target

genes based on those potential targets for which the motif of the corresponding TF is significantly enriched. Each regulon is then

defined as a TF and its direct target genes; (3) the RAS in each single cell is calculated through the area under the recovery curve.

The original implementation of SCENIC is not scalable to large datasets and its results can be significantly affected by sequencing

depth. To improve the scalability or robustness, wemodified its implimentation by pooling data from every 20 cells randomly selected

within each cell type and tissue and then applying SCENIC to the average gene expression profile of the pooled data. This simple

modification (referred to as Avg20) effectively increases the data quality as well as reduces the computational burden.

We compared the performance of our modified approach with the original version of SCENIC by analyzing the MCA data from

three representative tissues: bladder, kidney and bone marrow. For performance evaluation, we calculated the Silhouette value,

which is a commonly used quantitative metric for clustering consistency. Specifically, the silhouette value Si for the ith cell is defined

as Si = (bi-ai)/max(bi,ai), where ai is the average distance between the ith single cell and the rest from the same cell type, and bi is the

minimum average distance between the ith cell and any cell from a different cell type. A high silhouette value indicates a high degree

of separation among cell types; therefore, it provides a quantitative metric for functional relevance. For each tissue, the Avg20
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approach was repeated three times to estimate the variability due to random sampling, and t test was used to evaluate whether the

performance of Avg20 approach is better than that of using all single cells. The results are shown in Figure S1. The consistency be-

tween three replicates was evaluated by the following approaches. First, the overlap among the TFs of regulons was evaluated by

Fisher’s exact test. Second, for each Avg20 replicate, we calculated the pairwise distance of single cells in each tissue based on their

RAS and then calculated Pearson correlation coefficient (PCC) to evaluate the agreement of different Avg20 replicates.

Quantifying cell-type specificity score
To quantify the cell-type specificity of a regulon, we adapted an entropy-based strategy that was previously used for gene expression

data analysis (Cabili et al., 2011). First, we use a vector PR = ðpR
1 ; .;pR

n Þ to represent the distribution of RAS in the cell population

(n is the total number of cells). Here, the RAS are normalized so that
Pn

i =1p
R
i = 1. Then, we use a vector PC = ðpC

1 ; .;pC
n Þ to indicate

whether a cell belongs to a specific cell-type ðpC
i = 1Þ or not ðpC

i = 0Þ. This vector is also normalized so that
Pn

i = 1p
C
i = 1. Next,

we evaluate the Jensen-Shannon Divergence (JSD), which is a commonly used metric for quantifying the difference between two

probability distributions, defined as

JSD
�
PR; PC

�
=H

�
PR +PC

2

�
� HðPRÞ+H

�
PC

�
2

where HðPÞ= �P
pi logðpiÞ represents the Shannon entropy of a probability distribution P. The range of JSD values is between

0 and 1, where 0 means identical distribution and 1 means extreme difference. Finally, the regulon specificity score (RSS) is defined

by converting JSD to a similarity score:

RSSðR; CÞ= 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JSDðPR;PCÞ

q

For each cell type, the essential regulators are predicted as those associated with the highest cell-type specific scores.

Functional validation
We apply the following two methods to validate whether the predicted regulons are functional related to their associated cell types:

(1) SEEK analysis (Zhu et al., 2015), and (2) CoCiter analysis (Qiao et al., 2013). First, SEEK (http://seek.princeton.edu/modSeek/

mouse/) is a tool that provides the gene co-expression search function for over �2000 mouse datasets from the Gene Expression

Omnibus (GEO). We used the mouse version of SEEK to evaluate whether the genes in a regulon are co-expressed, and if so whether

the datasets supporting the co-expression are associated with an interested cell type. If genes are significantly co-expressed inmany

datasets related to a certain cell type, it could be inferred that the function of this regulon is highly related to this cell type. Taking the

erythroblast for example, we input gene list of regulon Lmo2 to SEEK web server and search for erythroblast related keywords (such

as ‘erythroblast’, ‘hematopoietic’, etc.) from the complete dataset-list ranked by query-coexpression score. Then we choose a

p < 0.01 cutoff to select significant datasets and finally use Fisher’s exact test to evaluate whether the selected datasets are signif-

icantly enriched in the top ranks. Second, the CoCiter (Qiao et al., 2013) is a text mining approach against the up-to-date Medical

Literature Analysis and Retrieval System Online (MEDLINE) literature database to evaluate the co-citation impact (CI, log-trans-

formed paper count) between a gene list and a term. To assess significance of co-citation, a Monte Carlo approach is used to eval-

uate random expectations by randomly selecting 1000 gene sets with the same size as input gene list and then a permutation p value

is calculated as the number of times that CIrandom > CItrue divided by 1000. Here we used the function ‘‘gene-term’’ in CoCiter (use

default parameters but set organism as mouse, http://www.picb.ac.cn/hanlab/cociter) to check whether the genes in a regulon are

significantly co-cited with a certain cell type in literatures.

Regulon module analysis
Regulon modules were identified based on the Connection Specificity Index (CSI) (Fuxman Bass et al., 2013), which is a context-

dependent measure for identifying specific associating partners. The evaluation of CSI involves two steps. First, the Pearson

correlation coefficient (PCC) of activity scores is evaluated for each pair of regulons. Next, for a fixed pair of regulons, A and B,

the corresponding CSI is defined as the fraction of regulons whose PCC with A and B is lower than the PCC between A and B.

Hierarchical clustering with Euclidean distance was performed based on CSI matrix to identify different regulon modules. We also

used CSI > 0.7 as a cutoff to build the regulon association network to investigate the relationship of different regulons. The result was

visualized by Cytoscape (Shannon et al., 2003). We used the same strategy to identify submodules within M7. For each regulon

module, its activity score associated with a cell type is defined as the average of the activity scores of its regulon members in all cells

within this cell type. Then the top ranked cell types are identified for each module.

Quantifying cell type relationship
Using the gene regulatory network analysis as a guide, we quantified the relationship between different cell-types based on the sim-

ilarity of the overall regulon activities, which is quantified by the Spearman correlation coefficient. The results were represented as a

network, where a pair of cell types were connected if the Spearman correlation coefficient is greater than 0.8. Again, the result

was visualized by using Cytoscape. Groups of related cell-types were identified by using the Markov Clustering Algorithm (MCL)
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(van Dongen and Abreu-Goodger, 2012), as implemented in the ClusterMaker application in Cytoscape. We used the default setting

except setting the inflation parameter as 2.

Web service
We created an interactive, web-based portal to explore the network atlas in this study (URL: http://regulon.rc.fas.harvard.edu). This

interactive website is constructed with some of latest technologies including JavaScript libraries jQuery 3.3, Bootstrap 4, and Leaflet

1.3. Together these libraries provide efficient client-side search, zooming functions for the large cell type network. The site is hosted

on an Apache web server running the Apache Tomcat which provides the necessary back-end support for the web server. Users can

zoom-in on a part of network, mouse-over, click on a cell type in the network, and browse information about the associated regulons

and other most similar cell types. The website also provides a complete, downloadable list of pairwise regulon-cell type associations.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details of the statistical tests used in this study are described briefly in the main text and more in-depth in the subsections above.

They are also summarized below:

(1) To evaluate the consistency of identified regulons in three Avg20 replicates in each of bladder, kidney and bonemarrow tissue,

we counted the number of overlapped regulon TFs between different replicates and applied the one-sided Fisher’s exact test

to evaluate statistical significance.

(2) t test was used evaluate whether the performance of Avg20 approach is better (p < 0.05) than that of using all single cells in

each of bladder, kidney and bone marrow tissue based on silhouette value.

(3) When applying SEEK to test whether the genes in regulons are co-expressed in certain cell type, we chose correlation signif-

icant datasets (p < 0.01) and then used one-sided Fisher’s exact test to evaluate whether datasets related to interested cell

type are significantly enriched (p < 0.01) in the top ranks.

(4) In CoCiter analysis, a permutation p value was introduced. It randomly selected 1000 gene sets with the same size of tested

regulon and the p value was calculated as the number of times that co-citation impact of ‘‘random’’ larger than ‘‘true’’ divided

by 1000.

ADDITIONAL RESOURCES

We created an interactive, web-based portal for community to explore the network atlas in this study. URL: http://regulon.rc.fas.

harvard.edu.
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